77 lines
2.4 KiB
Python
77 lines
2.4 KiB
Python
import torch
|
|
import torch.nn as nn
|
|
import torch.nn.functional as F
|
|
|
|
from base.base_net import BaseNet
|
|
|
|
|
|
class FashionMNIST_LeNet(BaseNet):
|
|
|
|
def __init__(self, rep_dim=64):
|
|
super().__init__()
|
|
|
|
self.rep_dim = rep_dim
|
|
self.pool = nn.MaxPool2d(2, 2)
|
|
|
|
self.conv1 = nn.Conv2d(1, 16, 5, bias=False, padding=2)
|
|
self.bn2d1 = nn.BatchNorm2d(16, eps=1e-04, affine=False)
|
|
self.conv2 = nn.Conv2d(16, 32, 5, bias=False, padding=2)
|
|
self.bn2d2 = nn.BatchNorm2d(32, eps=1e-04, affine=False)
|
|
self.fc1 = nn.Linear(32 * 7 * 7, 128, bias=False)
|
|
self.bn1d1 = nn.BatchNorm1d(128, eps=1e-04, affine=False)
|
|
self.fc2 = nn.Linear(128, self.rep_dim, bias=False)
|
|
|
|
def forward(self, x):
|
|
x = x.view(-1, 1, 28, 28)
|
|
x = self.conv1(x)
|
|
x = self.pool(F.leaky_relu(self.bn2d1(x)))
|
|
x = self.conv2(x)
|
|
x = self.pool(F.leaky_relu(self.bn2d2(x)))
|
|
x = x.view(int(x.size(0)), -1)
|
|
x = F.leaky_relu(self.bn1d1(self.fc1(x)))
|
|
x = self.fc2(x)
|
|
return x
|
|
|
|
|
|
class FashionMNIST_LeNet_Decoder(BaseNet):
|
|
|
|
def __init__(self, rep_dim=64):
|
|
super().__init__()
|
|
|
|
self.rep_dim = rep_dim
|
|
|
|
self.fc3 = nn.Linear(self.rep_dim, 128, bias=False)
|
|
self.bn1d2 = nn.BatchNorm1d(128, eps=1e-04, affine=False)
|
|
self.deconv1 = nn.ConvTranspose2d(8, 32, 5, bias=False, padding=2)
|
|
self.bn2d3 = nn.BatchNorm2d(32, eps=1e-04, affine=False)
|
|
self.deconv2 = nn.ConvTranspose2d(32, 16, 5, bias=False, padding=3)
|
|
self.bn2d4 = nn.BatchNorm2d(16, eps=1e-04, affine=False)
|
|
self.deconv3 = nn.ConvTranspose2d(16, 1, 5, bias=False, padding=2)
|
|
|
|
def forward(self, x):
|
|
x = self.bn1d2(self.fc3(x))
|
|
x = x.view(int(x.size(0)), int(128 / 16), 4, 4)
|
|
x = F.interpolate(F.leaky_relu(x), scale_factor=2)
|
|
x = self.deconv1(x)
|
|
x = F.interpolate(F.leaky_relu(self.bn2d3(x)), scale_factor=2)
|
|
x = self.deconv2(x)
|
|
x = F.interpolate(F.leaky_relu(self.bn2d4(x)), scale_factor=2)
|
|
x = self.deconv3(x)
|
|
x = torch.sigmoid(x)
|
|
return x
|
|
|
|
|
|
class FashionMNIST_LeNet_Autoencoder(BaseNet):
|
|
|
|
def __init__(self, rep_dim=64):
|
|
super().__init__()
|
|
|
|
self.rep_dim = rep_dim
|
|
self.encoder = FashionMNIST_LeNet(rep_dim=rep_dim)
|
|
self.decoder = FashionMNIST_LeNet_Decoder(rep_dim=rep_dim)
|
|
|
|
def forward(self, x):
|
|
x = self.encoder(x)
|
|
x = self.decoder(x)
|
|
return x
|